
International Journal of Scientific & Engineering Research Volume 10, Issue 7, July-2019                                                                                                        611 
ISSN 2229-5518  
 

IJSER © 2019 
http://www.ijser.org  

 
 
 
 
 
 
 
 
 
Fig. 1. (a) Schematics and (b) CAD of the tilt mechanism 

 
  
 

 
 
 
 
 
 
 
 
 

 
 

Fig. 2. (a) Schematics and (b) CAD of the pan mechanism 
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Abstract— The ability to identify and follow a moving object is not only important for human activities, but it is also critical necessity in the 
use of robots for automation and manufacturing, security applications, and for life sciences. This can be achieved by using the two degree 
of freedom (2-DOF) robotic system with a camera. For this purpose, dynamical model of pan and tilt mechanisms were determined by using 
Newton-Euler equation and bond graph model. The stability analysis of dynamical models is performed before designing the motion 
controllers for the 2-DOF robotic system.  To perform the analysis and simulation, all the parameters involved in the system dynamics were 
identified. The objective of this research work is to derive motion controllers for the pan and tilt mechanisms based on dynamical model and 
model the controller using bond graph modelling technique this adds the new dimension in modelling. These controllers make possible for 
camera to point in a desired direction within allowable specifications.  

Index Terms— Application, bond graph modelling, control system, lead compensator, robotic system, stability analysis, system modelling, 
simulation.   

——————————      —————————— 

1 INTRODUCTION                                                                     
HE schematic of the tilt mechanism has been shown in   fig. 
1 along with computer aided design (CAD) of tilt mecha-
nism.  The tilt mechanism is supporting and orienting the 

device (camera) in a desired direction. The tilt mechanism is ro-
tatable about a tilt axis supported on the pan mechanism. The 
tilt motor drives the tilt mechanism. There is a drive pulley on 
the shaft of the motor. Through the mechanism of pulleys and 
V-belt, the torque is transferred to the camera platform. This 
mechanism has one revolute joint (R). 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
The schematic of the pan mechanism has one degree of freedom 
as shown in fig. 2(a). The CAD of pan mechanism is presented 
in fig. 2(b).  The pan mechanism is supporting and orienting the 
tilt mechanism in the desired direction. The pan mechanism is 
rotatable about a pan axis. The base plate has rigid joint with 
vertical supports. It can be fixed on any vehicle such as an air-
craft. The pan motor drives the pan mechanism. Similarly, in 
fig. 2(b), a drive pulley is fixed on the shaft of the motor and 
another pulley is fixed with the supporting plate. Through this 
mechanism of pulleys and V-belt, the torque is transferred to 
the structure as shown in fig. 2. 

The bond graph model (BGM) of the lead compensator is devel-
oped and simulated in the section 6 for a robotic system.   By mod-
elling lead compensator using BGM, the system model from [4] is 
joined with this compensator in same domain and analysis is per-
formed in section 7. 

 

 

 

 

 

 

 

 

 

 
When pan and tilt mechanisms are joined together, they form 

robotic system with two revolute joints (RR) as in fig 2(b). The 
applications of these mechanisms working together or inde-
pendently are object tracking i.e. target acquisition, border patrol, 
search and rescue etc. The results are summarized in section 8. 

The tilt and pan model used in this paper is based on Newton-
Euler equation and is discussed in sections 2 and 4. The viscous 
friction was identified from experiments [14]. The mass and iner-
tia are obtained from CAD as explained in section 2. The tilt 
mechanism along with lead compensator is analyzed and simu-
lated in Section 3. The pan mechanism along with lead compen-
sator is analyzed and simulated in Section 5. Both the motion con-
trollers are designed to achieve the desired response of the ro-
botic system. The allowable specifications are: the settling time 
expected to be less than 0.5 seconds; the steady state error can be 
tolerated within ±2% and the %overshoot is expected to be kept 
below 5%. 
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The bond graph model (BGM) of the lead compensator is de-
veloped and simulated in the section 6 for a robotic system.   By 
modelling lead compensator using BGM, the system model from 
[4] is joined with this compensator in same domain and analysis 
is performed in section 7. 

When pan and tilt mechanisms are joined together, they form 
robotic system with two revolute joints (RR) as in fig 2(b). The 
applications of these mechanisms working together or inde-
pendently are object tracking i.e. target acquisition, border patrol, 
search and rescue etc. The results are summarized in section 8. 

2 TILT MECHANISM 
The dynamical model of the tilt mechanism is developed in the 
2.1.  The stability analysis of the tilt mechanism is presented in 
the 2.2. The transfer function of the tilt mechanism is calculated 
in the section 2.3. The tilt mechanism response is discussed in 
2.4. 
2.1 Linear Model of Tilt Mechanism 
The linear model of the tilt mechanism follows from the New-
ton-Euler with a non rigid body effect. The nonlinear model 
based on the Newton-Euler equation [1, 3] is as follows. 

𝜏𝜏 = 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒�̈�𝜃 + 𝑓𝑓𝑣𝑣θ̇ + 𝑓𝑓𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�θ̇� + 𝑚𝑚𝑠𝑠𝑚𝑚 sin 𝜃𝜃                     (1) 
 

Here  𝜏𝜏 = Torque, 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 = Effective inertial load, 𝑓𝑓𝑣𝑣 =
 Viscous friction,        𝑓𝑓𝑐𝑐 = Coulomb friction,         𝜃𝜃 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑚𝑚𝐴𝐴  
𝑏𝑏𝐴𝐴𝑏𝑏𝑏𝑏𝐴𝐴𝐴𝐴𝑠𝑠 𝑏𝑏ℎ𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴 (𝑚𝑚𝑠𝑠) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑎𝑎𝑓𝑓𝑚𝑚 𝑚𝑚𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏ℎ (𝑚𝑚). 

  
The effective inertial load of the system is computed from the 

following relation [14]. 
 

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐽𝐽𝐿𝐿 + 𝐽𝐽𝑝𝑝 + 𝑠𝑠2𝐽𝐽𝑎𝑎                                               (2) 
 

𝐽𝐽𝑎𝑎 = Actuator inertia, 𝐽𝐽𝑝𝑝 = Pulley inertia, 𝐽𝐽𝐿𝐿 = Load inertia, 
𝑠𝑠 = ratio between pulleys diameter. 
 

The nonlinear terms in equation (2) are 𝑠𝑠𝑠𝑠𝑠𝑠�θ̇� and sin 𝜃𝜃. 
These terms with nonlinearity are neglected in the linear model 
of the system. Thus, the linear model follows from (1) takes the 
following form 

 
𝜏𝜏 = 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒θ̈ + 𝑓𝑓𝑣𝑣θ̇                                                       (3) 

 
This second-order differential equation can be expressed in 

state space form by introducing the state variables: 𝑥𝑥1 = 𝜃𝜃, 𝑥𝑥2 =
�̇�𝜃, with the derivatives as �̇�𝑥1 = �̇�𝜃, �̇�𝑥2 = �̈�𝜃. Thus the state equa-
tions are 

 
�̇�𝑥1 = 𝑥𝑥2                    (4)  
�̇�𝑥2 = − 𝑒𝑒𝑣𝑣

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
𝑥𝑥2 + 𝑢𝑢

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
                                             (5) 

 

The state space model in vector-matrix form is as follows.        
[9-14] 

�̇�𝑥 = �
0 1
0 − 𝑒𝑒𝑣𝑣

𝐽𝐽 𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑥𝑥 +  �

0
1

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑢𝑢                                          

𝑦𝑦 = [1 0]𝑥𝑥 

 
   Here 

𝑥𝑥 = �
𝑥𝑥1
𝑥𝑥2� , �̇�𝑥 = ��̇�𝑥1�̇�𝑥2

� ,𝑢𝑢 = 𝜏𝜏,𝐴𝐴 = �
0 1

0 −
𝑓𝑓𝑣𝑣
𝐽𝐽 𝑒𝑒𝑒𝑒𝑒𝑒

� ,𝐵𝐵 = �
0
1
𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒

�,  

𝐶𝐶 =  [1 0]                                   (6) 
 
 The state space model of the tilt mechanism is described by 

(6). Now we analyze the stability of the tilt mechanism in 2.2. 

2.2 Stability Analysis of Tilt Mechanism 
The stability analysis of the tilt mechanism based on its equilib-
rium points is performed in this section. For the above state 
space equation (4-5) of the tilt mechanism, we have found all 
the equilibrium points by putting 𝑢𝑢 = 0, �̇�𝑥1 = 0 and �̇�𝑥2 =0 as fol-
lows [2] 

 
0 = 𝑥𝑥2  
0 = − 𝑒𝑒𝑣𝑣

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
𝑥𝑥2  

 
The equilibrium points are located at the (𝑥𝑥1, 0) where 𝑥𝑥1 be-

longs to the set of real numbers. The function f(x) for the stabil-
ity analysis of the tilt mechanism follows from (4-5). The type 
of each isolated equilibrium point can be found using the fol-
lowing function  

 

𝑓𝑓(𝑥𝑥) = ��̇�𝑥1�̇�𝑥2
� = �

𝑥𝑥2
− 𝑒𝑒𝑣𝑣

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
𝑥𝑥2�        (7) 

 
The behavior of the tilt mechanism can be analyzed using (7). 

The Jacobian of the tilt mechanism given below follows from 
(7). 

 
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

= �
0 1
0 − 𝑒𝑒𝑣𝑣

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
�  

 
The Jacobian of the tilt mechanism evaluated at (𝑥𝑥1, 0) is 

given below 
 

𝐴𝐴 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
�

(𝜕𝜕1,0)
= �

0 1

0 −
𝑓𝑓𝑣𝑣
𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒

� 

 
The numerical simulation of stability analysis is performed. 

Here term 𝒇𝒇𝒗𝒗
𝑱𝑱𝒆𝒆𝒇𝒇𝒇𝒇

 is always greater than 0 (non-negative) and ei-

genvalues of the A lies at 0 and − 𝒇𝒇𝒗𝒗
𝑱𝑱𝒆𝒆𝒇𝒇𝒇𝒇

. This implies that tilt mech-

anism is marginally stable. 
The viscous friction fv used in the above expression was de-

termined experimentally. The value of viscous friction is 0.0019 
Nms/rad. To find the effective inertial loads of tilt system, the 
inertial load of the tilt mechanism was analyzed in the Pro-E, 
the pulley inertia was determined separately in   Pro-E and the 
actuator inertia was obtained from the motor datasheet. The ef-
fective load of the tilt mechanism is calculated by using equa-
tion (2), and is summarized in table I. 
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TABLE I 

INERTIAL LOAD FOR TILT MECHANISM  

 
𝑱𝑱𝑳𝑳  

(𝐾𝐾𝑠𝑠 𝑚𝑚2) 
𝑱𝑱𝒑𝒑 

(𝐾𝐾𝑠𝑠 𝑚𝑚2) 
𝑱𝑱𝒂𝒂 

(𝐾𝐾𝑠𝑠 𝑚𝑚2) 
𝒏𝒏 

𝑱𝑱𝒆𝒆𝒇𝒇𝒇𝒇 
(𝐾𝐾𝑠𝑠 𝑚𝑚2) 

Tilt mech-
anism 0.0056 4.4×10-7 1.6×10-6 5.7143 0.005653 

 
Thus the

 
Jacobian

 
matrix determined carefully through ex-

perimental investigation is given below 
 

𝐴𝐴 = �0 1
0 −0.3361�

  
The eigenvalues corresponding to the Jacobian determined 

were found as follows 
 

|𝜆𝜆𝜆𝜆 − 𝐴𝐴| = �𝜆𝜆 −1
0 𝜆𝜆 + 0.3361� = 𝜆𝜆2 + 0.3361𝜆𝜆 = 0 

𝜆𝜆1 = −0.3361, 𝜆𝜆2 = 0  

Thus for the equilibrium points, the eigenvalues are at 0 and         
-0.8933. As one of the eigenvalues of A is zero, the phase por-
trait is in some sense degenerated [2]. Here the matrix A has a 
nontrivial null space. All the vectors in the null space of A are 
equilibrium points for the system. All the trajectories coverage 
to the equilibrium subspace as 𝜆𝜆1 < 0. 

2.3 Transfer Function of Tilt Mechanism 
The transfer function of the tilt mechanism is found using (6), 
value of 𝑓𝑓𝑣𝑣, table I and 𝐺𝐺(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝜆𝜆 − 𝐴𝐴)−1𝐵𝐵 from [9] , and is 
given below 

 
𝐺𝐺(𝑠𝑠) = 176.8972

𝑠𝑠2+0.3361𝑠𝑠
                                                          (8) 

 
The tilt mechanism is marginally stable as one of the system 

poles lies at the origin. The transfer function of the tilt mecha-
nism is described by (8).  

2.4 Gain Compensated Tilt Mechanism Response 
As noticed in [7,14], the (8) has a settling time, peak time, rise 
time, percentage overshoot and steady-state error are 24.7 sec, 
18.3 sec, 8.7 sec, 4.86 and 2 × 10-3 when the gain (3.3216 ×10-4) is 
selected on the root locus with radial line. All the time constants 
far exceed than desired performance values. This problem has 
to be compensated by designing the control system, as ex-
plained in the next section. 

3 MOTION CONTROL OF TILT MECHANISM  
The linear tilt system is controlled by lead compensator as 
shown in fig. 3. The compensated tilt mechanism (tilt mecha-
nism with lead compensator) analysis and simulation via the 
root locus method is described below.  

 
 
 
 

 
 

   Fig. 3. Tilt feedback control system 
 

The objective of a lead compensator is to drive the Ts to less than 
0.5 sec for the unity feedback system shown in fig. 3. The com-
pensated system is schematically shown in fig. 4.  
 

 

 
 
 
 
 

 
    Fig. 4. Closed loop system with compensator 

 
The lead compensator is found by using [9-12]. For the lead 

compensator, the calculated natural frequency, the desired 
dominant pole location (DPL) and zero location (zc) are  

 
𝑏𝑏𝑛𝑛 = 28.9810 𝑓𝑓𝑎𝑎𝑎𝑎/𝑠𝑠𝐴𝐴𝑓𝑓, 𝐷𝐷𝐷𝐷𝐷𝐷 = −20.0000 + 20.9738𝑖𝑖, 
𝐴𝐴𝑠𝑠𝑠𝑠𝑚𝑚𝐴𝐴 𝑎𝑎𝑏𝑏 𝑎𝑎𝐴𝐴𝑠𝑠𝑖𝑖𝑓𝑓𝐴𝐴𝑎𝑎 𝑝𝑝𝑓𝑓𝑚𝑚𝐴𝐴 =   93.2076°, 𝑧𝑧𝑐𝑐 = 0.01,             
𝐴𝐴𝑠𝑠𝑠𝑠𝑚𝑚𝑎𝑎𝑓𝑓 𝐶𝐶𝑓𝑓𝑠𝑠𝑏𝑏𝑓𝑓𝑖𝑖𝑏𝑏𝑢𝑢𝑏𝑏𝑖𝑖𝑓𝑓𝑠𝑠 𝑏𝑏𝑦𝑦 𝑧𝑧𝐴𝐴𝑓𝑓𝑓𝑓 =  −46.8605° 

 
Hence, the compensator angle contribution is 46.57° and thus 

the lead compensator transfer function may be written as  
 

𝐺𝐺𝑐𝑐(𝑠𝑠) =  𝑠𝑠 + 0.01
𝑠𝑠+39.6541

                                             (9) 
 

The open-loop transfer function resulting for fig. 4 is deter-
mined using (8) and (9), and is given below 

𝐾𝐾𝐺𝐺(𝑠𝑠)𝐺𝐺𝑐𝑐(𝑠𝑠)  = 𝐾𝐾 176.8972(𝑠𝑠 + 0.01)
𝑠𝑠(𝑠𝑠+0.3361)(𝑠𝑠+39.6541)

                              
(10) 

 
The open loop transfer function of tilt mechanism with lead 

compensator was determined in (10). According to the root lo-
cus technique [9], it has three branches of root locus, symmet-
rical with respect to the real axis, real-axis segment are [0,-.01] 
and [-0.3361,-39.6541], starting points are the open-loop poles at 
0, -0.3361 and -39.6541, ending points are the open-loop zeros 
at -0.01, ∞ (infinity),-∞, real-axis intercept is at -19.9951, angle of 
asymptotes are 90°, 270° and breakaway point is at -19.9951. The 
result of root-locus method, based on simulation performed in 
Matlab is shown in fig. 5 (a).   

A damping ratio of 0.69 is represented by a radial line drawn 
on the root-locus in fig 5(a). We have found dominant pair of 
poles at -19.9771 ± 20.9316i along the damping ratio line for a 
gain (K) equal to 4.6626. The compensated system step response 
is shown in fig. 5 (b). The closed loop transfer function (T(s)) 
based on (10) is as follows 

 
T(s)  = 824.8 s + 8.248

𝑠𝑠3+ 39.99 𝑠𝑠2 + 838.1 𝑠𝑠 + 8.248
                (11) 

 

 

Tilt controller 

 

τ 

Linear systems 

Tilt  
dynamics 

θoutput e θdesired Lead  
compensator 

C(s) R(s) G(s) K × Gc(s) 
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          (a) 

 
(b) 

Fig. 5. Compensated system (a) Root locus with radial line (b) step 
response  

 
As noticed in fig. 5(b), settling time, peak time, rise time, per-

centage overshoot and steady-state error are equal to 0.18 sec, 
0.159 sec, 0.0879 sec, 3.24 and 1.574×10-2 respectively. They 
meet the desired performance values.  

4 PAN MECHANISM 
The dynamical model of the pan mechanism is developed in the 
4.1. The stability analysis based on the state space model of the 
pan mechanism is presented in the 4.2. The transfer function of 
the pan mechanism is calculated in the 4.3. The pan mechanism 
response is discussed in 4.4.  

4.1 Linear Model of Pan Mechanism 
The linear model of the pan mechanism follows from the New-
ton-Euler equation [1] under certain assumptions. The nonlin-
ear model based on the Newton-Euler equation is as follows. 

𝜏𝜏 = 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒�̈�𝜃 + 𝑓𝑓𝑣𝑣θ̇ + 𝑓𝑓𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�θ̇� + 𝑚𝑚𝑠𝑠𝑚𝑚 sin 𝜃𝜃                                  (12) 

 

𝜃𝜃 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑚𝑚𝐴𝐴 𝑏𝑏𝐴𝐴𝑏𝑏𝑏𝑏𝐴𝐴𝐴𝐴𝑠𝑠 𝑏𝑏ℎ𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴(𝑚𝑚𝑠𝑠)𝑎𝑎𝑠𝑠𝑎𝑎 𝑎𝑎𝑓𝑓𝑚𝑚 𝑚𝑚𝐴𝐴𝑠𝑠𝑠𝑠𝑏𝑏ℎ (𝑚𝑚) 
 
The nonlinear model of pan mechanism presented in [2, 14] 

can also be used for analysis and simulation. For the pan mech-
anism 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃 term is effectively equal to zero explained by fig. 
2. Therefore, (12) becomes 

 
𝜏𝜏 = 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒�̈�𝜃 + 𝑓𝑓𝑣𝑣θ̇ + 𝑓𝑓𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�θ̇�                 (13) 
 

This equation is for the pan mechanism and represents the 
nonlinear model of pan mechanism. This nonlinear equation 
needs to be linearized in order to develop a controller for the 
pan mechanism. The nonlinear term in equation (13) is 𝑠𝑠𝑠𝑠𝑠𝑠�θ̇�. 
Therefore, term with nonlinearity is neglected in the linear 
model of the system. Linearization simplifies the pan model. 
Thus, the linear model takes the following form 

 
𝜏𝜏 = 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒θ̈ + 𝑓𝑓𝑣𝑣θ̇                                                      (14) 

 
The viscous friction has been determined experimentally. 

Similar to [7,14], the value of the viscous friction is 0.007 
Nms/rad for the pan mechanism. The effective load is calcu-
lated by using equation (2), and is shown in table II. 

 
TABLE II 

INERTIAL LOAD FOR PAN MECHANISM  

 
𝑱𝑱𝑳𝑳  

(𝐾𝐾𝑠𝑠 𝑚𝑚2) 
𝑱𝑱𝒑𝒑 

(𝐾𝐾𝑠𝑠 𝑚𝑚2) 
𝑱𝑱𝒂𝒂 

(𝐾𝐾𝑠𝑠 𝑚𝑚2) 
𝒏𝒏 

𝑱𝑱𝒆𝒆𝒇𝒇𝒇𝒇 
(𝐾𝐾𝑠𝑠 𝑚𝑚2) 

Pan mech-
anism 0.0743 4.4×10-7 1.6×10-6 5.7143 0.07435 

 
The state space model for pan mechanism was developed as 

in the case of tilt mechanism and is given below in vector-ma-
trix form. 

 

�̇�𝑥 = �
0 1
0 − 𝑒𝑒𝑣𝑣

𝐽𝐽 𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑥𝑥 +  �

0
1

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑢𝑢                                             (15) 

𝑦𝑦 = [1 0]𝑥𝑥 
 

In the next section, we have analyzed the stability of the pan 
mechanism.   

4.2 Stability Analysis of Pan Mechanism 
The stability analysis of the pan mechanism is based on its equi-
librium points. For this purpose, we have found all the equilib-
rium points similar to section 2.2. The equilibrium points are 
located at the (𝑥𝑥1, 0) where 𝑥𝑥1 belongs to the set of real numbers. 
Now we analyze the behavior of the pan mechanism at equilib-
rium points. Similar to (7), the function for the stability analysis 
of the pan mechanism based on (15) is presented here  

𝑓𝑓(𝑥𝑥) = ��̇�𝑥1�̇�𝑥2
� = �

𝑥𝑥2

−
𝑓𝑓𝑣𝑣
𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒

𝑥𝑥2� 

The Jacobian at (𝑥𝑥1, 0) of the pan mechanism is as follows 
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Fig. 6. Pan feedback control system 
 

 

𝐴𝐴 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
�

(𝜕𝜕1,0)
= �

0 1

0 −
𝑓𝑓𝑣𝑣
𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒

� 

 
Using the values of 𝑓𝑓𝑣𝑣 (0.007) and  𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒(0.07435) the expression 

above takes the following form 
 

𝐴𝐴 = �0 1
0 −0.09415�

  
The eigenvalues are found as 

|𝜆𝜆𝜆𝜆 − 𝐴𝐴| = �𝜆𝜆 −1
0 𝜆𝜆 + 0.09415� = 𝜆𝜆2 + 0.09415𝜆𝜆 = 0 

𝜆𝜆1 = −0.09415, 𝜆𝜆2 = 0  

For the equilibrium points at (x1,0) the eigenvalues are at 0 
and -0.09415. As one of the eigenvalues of A is zero, the phase 
portrait is in some sense degenerated. Therefore, matrix A has 
a nontrivial null space. All vectors in the null space of A are 
equilibrium points for the system. All the trajectories converge 
to the equilibrium subspace as 𝜆𝜆1 < 0.          

4.3 Transfer Function of Pan Mechanism 
The transfer function of the pan mechanism is determined us-
ing (15), value of 𝑓𝑓𝑣𝑣, table II and 𝐺𝐺(𝑠𝑠) = 𝐶𝐶(𝑠𝑠𝜆𝜆 − 𝐴𝐴)−1𝐵𝐵, and is 
given below 

𝐺𝐺(𝑠𝑠) = 13.4499
𝑠𝑠2+0.09415𝑠𝑠

                  (16) 
 
4.4 Gain Compensated Pan Mechanism Response 
Similarly, as noticed in [7,14], for (16) the settling time, rise time, 
peak time, percentage overshoot and steady-state error are 87.8 
sec, 30.7 sec, 63 sec, 5.05 and 2×10-3 respectively, when the gain 
(3.4719×10-4) is selected on the intersection of the root locus and 
the radial line for a unity feedback system with gain K. These 
values far exceed the desired performance values. This defi-
ciency has to be compensated by designing the control system. 
The design of control system for the pan mechanism is ex-
plained in the next section. 

5 MOTION CONTROL OF PAN MECHANISM 
The linear pan mechanism is controlled by lead compensator to 
meet the desired conditions on the transient and the steady 
state response as shown in fig. 6. The compensated pan system 
(pan mechanism with lead compensator) analysis and simula-
tion via the root locus method is presented here.  
 

 
 
 
 
 

 

The objective of a lead compensator is to drive the Ts to less 
than 0.5 sec for the unity feedback system. The compensated 
system is schematically shown in fig. 6. The lead compensator 

is found by using [9-12]. For the lead compensator, the calcu-
lated natural frequency, the desired dominant pole location 
(DPL) and zero location (zc) are  

𝑏𝑏𝑛𝑛 = 28.9855 𝑓𝑓𝑎𝑎𝑎𝑎/𝑠𝑠𝐴𝐴𝑓𝑓, 𝐷𝐷𝐷𝐷𝐷𝐷 = −20.00 + 20.9739 𝑖𝑖, 
Angle at desired pole =   92.2711°, zc = 0.01,             
Anglar Contribution by zero =  −46.3471° 

 
Hence, the compensator angle contribution is 46.3818° and 

thus the lead compensator is  
 
Gc(𝑠𝑠)  =  𝑠𝑠 + 0.01

𝑠𝑠+39.99
                                          (17) 

 

The open-loop transfer function resulting for fig. 6 is deter-
mined by using (16) and (17), and is given below 

 
KG(s)Gc(s)  = K 13.4499(𝑠𝑠 + 0.01)

𝑠𝑠(𝑠𝑠+0.09415)(𝑠𝑠 + 39.99)
              (18) 

 
The transfer function of pan system with lead compensator 

was determined in (18). According to the root locus technique 
[9], it has three branches of root locus, symmetrical with respect 
to the real axis, real-axis segment is [0,-0.01] and [-0.09415,-
39.99], starting points are the open-loop poles at 0, -0.09415 and 
-39.99, ending points are the open-loop zeros at -0.01, ∞ (infin-
ity),-∞, real-axis intercept is at -20.0421, angle of asymptotes are 
90°, 270°, breakaway point is at -20.0421. The result of the root-
locus method, based on simulation performed using Matlab is 
shown in fig. 7 (a) and (b). 

A damping ratio of 0.69 is represented by a radial line inter-
secting the root-locus. We have found dominant pair of poles at 
-19.8993 ± 20.8851i along the damping ratio line for a gain (K) 
equal to 61.4550. The compensated system step response is 
shown in fig. 7 (b). The closed loop transfer function T(s) based 
on (18) is as follows. 

 

T(s)  = 830.3 s + 8.266
𝑠𝑠3+ 39.69 𝑠𝑠2+ 830.3 𝑠𝑠 + 8.266

                (19) 
 

 
(a) 

Pan controller 

 

τ Pan 
dynamics 

θoutput e θdesired Lead  
compensator 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 7, July-2019                                                                                                        616 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org  

 

 

 

 
(b) 

     Fig. 7. Compensated pan system (a) root locus with radial line (b) step    
     response  

 
As noticed in fig. 7(b), the settling time, rise time, peak time, 

percentage overshoot and the steady-state error are equal to 
0.202 sec, 0.0733 sec, 0.15 sec, 4.63 and 6×10-3 respectively. They 
meet the desired performance values. 

6 BOND GRAPH MODEL OF LEAD COMPENSATOR 
The lead compensator circuit is implementable using the pas-
sive components such as resistor and capacitor as shown in the 
fig. 8. 

 
 
 

 
 
 
 
 
 
 

 
 

     Fig. 8. Lead compensator 
 

 

In fig. 8, the C, R1, R2, Vin and Vout represent the capacitor, 
resistor 1, resistor 2, input voltage and output voltage respec-
tively. The values of these components are found by equating 
the following equation with the transfer function of lead com-
pensator in section 3 and 5. 

 

𝐺𝐺(𝑠𝑠) = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

=  
1
𝑅𝑅1� +𝐶𝐶𝑠𝑠

1
𝑅𝑅1� +1 𝑅𝑅2� +𝐶𝐶𝑠𝑠

                                                            (20) 

 
The values found by using (20) are used in the bond graph 

model of lead compensator. The equivalent bond graph model 
of the lead compensator is shown in fig. 9.   
 

 
       Fig. 9. BGM of Lead compensator  
 

Here Se represents the source of effort. The 0 and 1-junctions 
are the representation of KCL and KVL in bond graph modeling 
respectively. The controller such as lead compensator is mod-
eled using BGM here. Similarly, the lag, lag-lead compensators 
can be modeled. 

7 BGM OF A SYSTEM AND CONTROLLER 
The BGM of robotic system [4] such as a tilt mechanism, and a 
pan mechanism with BGM of lead compensator has added new 
dimension in this research work. The system has been already 
modeled using BGM [4] and now a lead compensator has been 
modeled using BGM. This research work leads to system and 
controller modelling using BGM technique as shown in fig. 10. 
The I12 indicates the inertia due to DC motor and I18 indicates 
the inertia due to load attached with pulley 2. The R11 indicates 
the viscous friction due to DC motor and R15 indicates the vis-
cous friction between the pulleys and R19 indicates the viscous 
friction due to load. The TF indicates the gear ratio. 

The reduced bond graph model of the robotic system with 
lead compensator is shown in fig. 11. Each storage element in 
the BGM contributes the state that will appear in the state space 
model. From the fig. 11, it is concluded that BGM of robotic sys-
tem with lead compensator contributes the 3 states and hence 
the order of the characteristic equation is 3. 

In the close loop, the BGM of robotic system with lead com-
pensator is presented in fig. 12. The results of BGM match with 
the results of section 3 and 5. 

The BGM of robotic system gives the information that state 
space model is controllable and observable as presented in fig. 
10. In fig 10, BGM of robotic system indicates that both the stor-
age elements have integral causality and inverse BGM of ro-
botic system indicates that 2 storage elements have differential 
causality. Therefore, the order of denumerator is 2 in the trans-
fer function of robotic system.   

The state space model is obtained directly from the BGM. The 
numerical analysis of controllability and observability matrices 
for the considered system indicate that it is controllable and ob-
servable.  
 

R1 

R2 

C 

Vout 

Vin 
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Fig. 11. Reduced  BGM of robotic system with Lead compensator 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Closed loop BGM of robotic system with Lead compensator 
 

 
 
 

 
    Fig. 10. BGM of robotic system with Lead compensator 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

This proves that bond graph can be used as an effective mod-
elling method for the systems and controllers. By using the 

Robotic system Lead Compensator 
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Newton-Euler method, the equation formed has equivalent ef-
fects. By using the BGM, all the component of mechatronics sys-
tem such as robotic system considered are exactly modeled 
without taking the equivalent effect in [4].   

8 RESULTS 
Linear modelling of the tilt and pan mechanisms and its motion 
control based on feedback control system using the lead com-
pensators for them leads to the desired results presented in the 
table III. 

 
TABLE III 

COMPENSATED SYSTEM MODEL RESULTS 

 
TS 

(seconds) 
eSS %OS 

Tilt Mecha-
nism 

0.159 1.574×10-2 3.24 

Pan Mecha-
nism 

0.202 6.000×10-3 4.63 

 
 

• The values of settling time meet the desired performance 
value for both mechanisms. The desired performance value 
is set according to the settling time of the eye ball. 

• The percentage overshoots and steady state errors are 
within desired performance values. 

In order that the steady state error and %OS do not increase 
more than the desired values, encoder and Optoschmitt sensor 
are used in the real time system. The Optoschmitt sensor checks 
that %OS does not increase more than the desired value. The 
encoder attached with motor gives the position of motor shaft. 
The positioning accuracy of 0.0015 rad was achieved for the pan 
and tilt mechanisms. This was achieved by using the DC-motor 
having encoder of resolution 4096 pulses/revolution. This en-
sures the steady state error stays below the desired value (<2%).   

The model of the pan and tilt mechanisms with lead compen-
sators gives us desired orientation of camera. This work is ap-
plicable to the mechatronic systems such as robotic arms and 
serial or parallel linked robotic mechanisms. Thus robotics sys-
tem is appropriate for tracking systems. The lead compensator 
has been modeled using the bond graph modeling which added 
a novelty in this research work. Thus systems such as pan and 
tilt mechanisms and controllers such as lead compensators, 
both are modeled using bond graph modeling technique. This 
has reduced requirement of the factors such as modulated 
source of effort “MSe” to join the two different domains such as 
MSe [16] has been used in the [4] to join the controller with tilt 
mechanism. The results obtained from the conventional tech-
nique presented in section 3 to 5 matched closely with the re-
sults of section 7. 
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